Standard(s)

MGSE9-12.A.SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

Greatest Common Factor

Common Factors

- Factors that are shared by wo or more numbers are called common factors.
reatest Common Factor (GCF)
- To find the greatest common factors is called the Greatest Common Factor (GCF).
factorization of both numbers. The GCF is the product of the tree and complete the prime
- You can also do a factor t-chart for each number and find the largest common factor

Example: Find the GCF of 56 and 104

Factoring

What is Factoring?
Factoring

- Finding out which two expressions you multiplied together to get one
single expression.
- I like sispliting an expression into a product of simpler expressions.
The opposite of expanding or distributing.
- The opposite of expanding or distributing

Expressions have factors too: $(x+3)(x+1)=x^{2}+4 x+3$
Factor Factor

Finding the GCF of Numbers

Practice: Find the GCF of the following numbers.
a. $30,45 \quad G C F=15$
b. 12,54
$G C F=6$

30		45	
$1 / 30$	1	45	
2	15	3	15
3	10	5	9
5	6		

12	54	
1	12	1
2	54	
3	2	27
3	4	3
		18
		9

Finding the GCF of Two Expressions

To find the GCF of two expressions, you will complete the prime factorization of the two numbers or factor chart of the two numbers AND expand the variables. Circle what is common to both.
Example: find the GCF of $36 x^{2}=y$ and $16 x y$

Finding the GCF of Two Expressions

To find the GCF of two expressions, you will complete the prime factorization of the two numbers or factor chart of the two numbers AND expand the variables. Circle what is common to both.
Example: Find the GCF of $36 x^{2} y$ and $16 x y$

GCF of Expressions

Find the GCF of the following pairs of expressions.

1) 100 and 60

2) $15 x^{3}$ and $9 x^{2}$

$$
G C F=3 x^{2}
$$

GCF of Expressions

Find the GCF of the following pairs of expressions. 3) $9 d d^{2} b^{2}$, $6 d b^{3}$, and $12 b$

$$
G C F=3 b
$$

4) $8 x^{2}$ and $7 y^{3}$

$$
G C F=1
$$

Factoring Polynomials

What is the GCF of $15 x^{2}$ and $20 x$?

$$
G C F=5 x
$$

1.Find the greatest common factor of fill the
2. The GCF of the terms goes on the outside of the expression and what is leftover goes in parenthesis after the GCF.
3. After "factoring out" the GCF, the only that number that divides into each term should be 1 .

How would you factor $\frac{15 x^{2}}{5 x}+\frac{20 x}{5 x}$ using the GCF?

$$
5 x(3 x+4)
$$

Factoring by GCF

Factor the polynomials using the GCF.

1) $\frac{x^{2}}{x}+\frac{5 x}{x}$
GCF = X $x(x+5)$
2) $\begin{aligned} \frac{x^{2}}{x}-\frac{8 x}{x} \\ x(x-8)\end{aligned}$
GCF = X
3) $\begin{aligned} & \frac{x^{2}}{x}-\frac{8 x}{x} \\ & x(x-8)\end{aligned}$

Factoring BY GCF

Factor the polynomials using the GCF.
4) $\frac{28 x}{7}-\frac{63}{7}$
GCF $=7$
$7(4 x-9)$

28	63		
1	28	1	63
2	14	3	21
4	7	(7)	9

5) $\frac{18 x^{2}}{6 x}-\frac{6 x}{6 x}$
$6 x(3 x-1)$
GCF $=6 x$

18	6	
1	18	1
2	(6)	
3	9	2

Factoring BY GCF

Factor the polynomials using the GCF.

8) $\frac{-9 a^{2}}{-a} \frac{-a}{-a} \quad G C F=-a$
$-a(9 a+1)$
9) $\frac{6 x^{3}}{3 x}-\frac{9 x^{2}}{3 x}+\frac{12 x}{3 x} \quad$ GCF $=3 x$
$3 x\left(2 x^{2}-3 x+4\right)$

Factoring BY GCF

Factor the polynomials using the GCF.
11) $\quad 4 x^{3}+6 x^{2}-8 x \quad G C F=2 x$
$2 x\left(2 x^{2}+3 x-4\right)$
12) $\frac{15 x^{3} y^{2}}{5 x^{2} y^{2}}+\frac{10 x^{2} y^{4}}{5 x^{2} y^{2}} \quad$ GCF $=5 x^{2} y^{2}$ $5 x^{2} y^{2}\left(3 x+2 y^{2}\right)$

