Standard（s）

MGSE9－12．A．SSE． 2 Use the structure of an expression to rewrite it in different equivalent forms．

Factoring Special Products－

For example，see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$ ，thus
Difference of Squares factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$ ．

Difference of Squares

Review：Factor the following expressions：
a．$x^{2}-49 \quad a=1 \quad b=0 \quad c=-49 \quad 5$
$(x-7)(x+7)$

1．What do you notice about the＂a＂terma It is a perfect square \qquad
2．What do you notice about the＂c＂term？It is a perfect square \qquad L・ー・ー・ー・ー・ー・ー・ー・
3．What do you notice about the＂b＂term？It is missing
4．What do you notice about the factored form？ \qquad

Difference of Squares

Can you apply the "Difference of Two Squares" to the following polynomials?
$3 x \quad 7 \mathrm{x}$
3 x $4 x \quad 1$ $\begin{array}{cccc}\text { a. } 9 x^{2}-49 & \text { b. } 9 x^{2}-100 & 2 x-5 & \text { c. } 4 x^{2}-25\end{array}$ $\begin{array}{lll}(3 x+7) & (3 x-7) & (3 x-10)(3 x+10)\end{array}(2 x-5)(2 x+5) \quad(4 x-1)(4 x+1)$

	5×8	6×9	$7 \times \quad 3$
e. $x^{2}+25$	f. $25 x^{2}-64$	g. $36 x^{2}-81$	h. $49 x^{2}-9$
Not a Difference	$(5 x+8)(5 x-8)$	$(6 x-9)(6 x+9)$	$(7 x+3)(7 x-3)$

Not a Difference $(5 x+8)(5 x-8) \quad(6 x-9)(6 x+9) \quad(7 x+3)(7 x-3)$ of Squars (adding)

Factoring Special Products Perfect Square Trinomials

Factoring Special Products

Perfect Square Trinomials

Review: Factor the following expressions:

$$
\begin{array}{ccc}
(x+4)(x+4) & a_{1}^{a \cdot c} & (x-1)(x-1) \\
(x+4)^{2} & +4 \times 4 & (x-1)^{2} \\
b & -1 /)_{-2}^{a \cdot 1} \\
b
\end{array}
$$

1. What do you notice about the "a" term? Perfect Square
2. What do you notice about the "c" term? Perfect Square
\qquad
3. What do you notice about the "b" term? \qquad
\qquad
4. What do you notice about the factored form? \qquad

Perfect Square Trinomial

