Solving Quadratic Equations by Square Roots

Solution of a Quadratic

The solution of a quadratic function is its:

- Zeros
- Roots
- x-intercepts

$$
X=\{,\}
$$

NOTE: Solving a quadratic equation means finding its zeros!

Solving Quadratics by taking Square Roots

1. Get x^{2} or the binomial squared on one side of the equation by itself
2. Take the square root of BOTH sides of the equal sign
3. Don't forget the \pm sign
4. Simplify if necessary

Solving Quadratic using Square Roots

Solve each equation by taking square roots.

1) $\sqrt{p^{2}}=\sqrt{25}$

$$
\text { 2) } \begin{aligned}
x^{2} & =\sqrt{18} \\
x= \pm 3 \sqrt{2} & \sqrt{18} \\
x & \\
& 3 \sqrt{2}
\end{aligned}
$$

$p= \pm 5$
$p=\{-5,5\}$
$x=\{-3 \sqrt{2}, 3 \sqrt{2}\}$

Solving Quadratic using Square Roots

Solve each equation by taking square roots.
3) $p^{2}-3=5$
4) $5 x^{2}+1=46$
$\sqrt{P^{2}}=\sqrt{8}$
$-1-1$
$\frac{5 x^{2}}{5}=\frac{45}{5}$
$p= \pm 2 \sqrt{2}$
$\sqrt{x^{2}}=\sqrt{9}$
$p=\{-2 \sqrt{2}, 2 \sqrt{2}\}$

$$
\begin{aligned}
& x= \pm 3 \\
& x=\{-3,3\}
\end{aligned}
$$

Solving Quadratic using Square Roots

Solve each equation by taking square roots.

$$
\begin{aligned}
& \text { 5) } \sqrt{(x+1)^{2}}=\sqrt{25} \\
& \text { 6) }(x-2)^{2}+2=9 \\
& x+1= \pm 5 \\
& \sqrt{(x-2)^{2}}=\frac{-2}{\sqrt{7}} \\
& x=-1 \pm 5 \\
& x=-1+5 \quad x=-1-5 \\
& x=4 \quad x=-6 \\
& \begin{array}{l}
x-2= \pm \sqrt{7} \\
+2 \quad+2 \\
x=2 \pm \sqrt{7} \\
x=2+\sqrt{7} \quad x=2-\sqrt{7}
\end{array}
\end{aligned}
$$

