Solving $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}=\mathbf{0}$ by Completing the Square

Review: Perfect Square Trinomials

$$
\begin{array}{cc}
x & x^{2} \\
x^{2}+8 x+16 & x^{2}-10 x+25 \\
(x+4)^{2} & (x-5)^{2}
\end{array}
$$

Completing the Square

Complete the square to form a perfect square trinomial and then factor.

$$
\begin{array}{cc}
x^{2}+12 x+\left[(6)^{2}\right. & z^{2}-4 z+\sqrt{(2)^{2}} \\
(x+6)^{2} & (z-2)^{2} \\
x^{2}-100 x+(50)^{2} \\
(x-50)^{2}
\end{array}
$$

Completing the Perfect Square Trinomial

Step 1: Identify b (coefficient of the middle term)
Step 2: Find $\left(\frac{b}{2}\right)^{2}$

Step 3: Add $\left(\frac{b}{2}\right)^{2}$

Step 4: Factor

Solving $x^{2}+b x+c=0$
 Completing the Square

Step 1: Write the equation in the form

$$
x^{2}+b x+\square=c+\square
$$

Step 2: Find $\left(\frac{b}{2}\right)^{2}$ and to both sides of the equation
Step 4: Factor the perfect-square trinomial
Step 5: Take square roots of both sides
Step 6: Write and solve two equations

Completing the Square

Example: Solve by completing the square.

1) $x^{2}+12 x+11=0$

$$
\begin{aligned}
&-11-11 \\
& x^{2}+12 x+\sqrt{(6)^{2}}=-11+\frac{36}{(66)^{2}} \text { Complete the perfect } \\
& \sqrt{(x+6)^{2}}=\sqrt{25} \quad \text { Square } \\
& x+6= \pm 5 \quad \text { Factor the Perfect Square Trinomial } \\
& \frac{-6}{x}=-6 \\
& \\
& x=-6+5 \\
& x=-1
\end{aligned} \quad \begin{aligned}
& x=-6-5 \\
& x=-11
\end{aligned}
$$

Completing the Square
Solve the following by completing the square.
2) $x^{2}-2 x=1$
$x^{2}-2 x=1$
$x^{2}-2 x+\frac{1}{(1)^{2}}=1+(1)^{2}$ Complete the Square $\sqrt{(x-1)^{2}}=\sqrt{2} \quad$ Factor the Perfect Square Trinomial $x-1= \pm \sqrt{2} \quad$ Take Squaw Roots

$$
\begin{aligned}
& +1 \\
& x=1 \pm \sqrt{2}
\end{aligned}
$$

