Wednesday February 7, 2018

How do I get ready for class?

1) On Desk: binder, pens/pencils
2) You are tardy if you are not in your seat when the bell rings

Homework:
Quadratic Formula

Upcoming......
Test moved to Tuesday

Warm Up:

1) List all the different ways we have learned to solve a quadratic. Factoring, Completing the Square, Taking, Rots
2) Solve by completing the square: $x^{2}-12 x=13$

Homework Review

Now Reviewing:

- Completing the Square

Standards

- MGSE9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from $a x^{2}+b x+c=0$.
- MGSE9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).

The Quadratic Formula

So far we have learned several methods for solving quadratic equations. $\quad x^{2}+b x+\square=c+\square$ Factoring, Square Roots, Completing the Square
The quadratic formula will work for ANY quadratic equation written in standard form : $a x^{2}+b x+c=0$

The Quadratic Formula

Steps for successfully applying the Quadratic Formula:

1. Write the equation in standard form.
2. Set the function equal to 0 if necessary.
3. Identify a, b, and c and plug them into the quadratic formula using parentheses.
4. Use the order of operations to simplify.
5. Simplify the radical if you can.

The Quadratic Formula

The Quadratic Formula can be used to solve any quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

** Write the formula for EVERY problem! **

The Discriminant of a Quadratic

The discriminant tells the number of solutions of a quadratic.

THE DISCRIMINANT OF A QUADRATIC

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Finding the discriminant for each equation, and then find the solutions using the quadratic formula.
A) $f(x)=3 x^{2}-5 x-2$

$$
\begin{aligned}
& 0=3 x^{2}-5 x-2 \quad a=3 \quad b=-5 \quad c=-2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-2)}}{2(3)} \\
& x=\frac{5 \pm \sqrt{25+24}}{6} \\
& X=\frac{5 \pm \sqrt{49}}{6} \text { discriminant } \\
& \text { Discriminant: } 49 \text { (Positive) } \\
& x=\frac{5 \pm 7}{6} \\
& x=\frac{5+7}{6}=\frac{12}{6} \\
& =2 \\
& \begin{aligned}
x=\frac{5-7}{6} & =\frac{-2}{6} \\
& =\frac{-1}{3}
\end{aligned}
\end{aligned}
$$

Number of Solutions: $\frac{2 \text { real }}{\text { Solutions }}$ Solutions: $X=\left\{-\frac{1}{3}, 2\right\}$

Finding the discriminant for each equation, and then find the solutions using the quadratic formula.
B) $x^{2}+2=2 x$

$$
\begin{aligned}
& x^{2}-2 x+2=0 \quad a=1 \quad b=-2 \quad c=2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4-8}}{2} \\
& =\frac{2 \pm \sqrt{-4} \text { Discriminant }}{2}
\end{aligned}
$$

Discriminant: - 4

* You cannot
take the square root of a negative!

Classwork/Homework

Quadratic Equations \#1 and \#2 a, b

