Solving Quadratics

- 1. Factoring
- 2. Square Roots
- 3. Completing the Square
- 4. Quadratic Formula

	Looks Like	How to Factor	Examples
Factoring	$ax^{2} - bx = 0$ $x^{2} + bx + c = 0$ $ax^{2} + bx + c = 0$ No parentheses in original equation	 Must be set equal to zero before solving Factor (See Factoring Sheet) Use Area Model to put into 2 binomials () ()=0 Or GCF () = 0 Then use the Zero Product Property (ZPP) Write answers as: x = { , } 	$4x^{2} + 8x = 0$ (GCF) (GCF, then Factor) $3x^{3} - 21x^{2} + 24x = 0$
Square Roots	$ax^{2} = c$ $ax^{2} - c = 0$ $a(x - \#)^{2} = c$ No b term	 Does not have to be set equal to zero before solving Isolate the expression being squared Take the square root on both sides of the equation (include ±) Solve both equations if necessary Write answers as: x = { , } 	$2x^2 + 5 = 55$ $2(x + 4)^2 = 90$

Completing the Square	x^{2} + bx + c a = 1 b is even	 Collect variables on the left, numbers on the right Take half of b and square this number, (^b/₂)² Add this number to BOTH sides of the equation Factor the left side of the equation – you should get (²)² Take the square root on both sides; include (±) Write 2 equations and solve for the variable (simplify all roots) Write answers as: x = {², 3 	$x^2 - 8x + 15 = 0$
Quadratic Formula	ax ² + bx + c = 0 Use for ANY quadratic written in standard form	• Put into standard form $(ax^2 + bx + c = 0)$ • List $a = _$, $b = _$, $c = _$ • Plug a , b , and c into, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ • Simplify all roots • Reduce only if ALL terms can divide evenly by the same factor • Write answers $as: x = \{ , \}$	$4x^2 + 7x - 15 = 0$