Name:_	
Date:	Block:

Unit 1 Study Guide

What you need to know & be able to	Things to remember		Examples		
do Identifying arts of an expression Igebraic Variable Constant Term Coefficient Factors		of an	a. Identify the: $32x^2 - 8x + 4y - 9$ Terms: $32x^2 - 8x + 4y - 9$ Variables: $X_1 Y$ Constants: $Y_1 Y$ Factors of 1st term: $Y_1 Y_1 Y_2 Y_1 Y_1 Y_1 Y_2 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1 Y_1$	b. Identify the: $24x^{2}-x-7$ Terms: $24x^{2}-x-7$ Constants: -7 Coefficients: 24 , -1 Factors of 2^{nd} term: $-1 \cdot \times$	
2. Classifying Polynomials	"First Name" - degree #: constant x: linear x²: quadratic x³: cubic	"Last Name" - number of terms 1: monomial 2: binomial 3: trinomial 4+: polynomial	Write in standard form & classify: a. $3x$ + $7x^2$ - $5x$ $7x^2$ - $2x$ quadratic binomial b. 23 Constant	Write in standard form & classify: c. $\frac{2x^2-2x+5=x^2}{1x^2-2x+5}$ quadratic trinomial d. $2x^3 + x^2 + 3x + 1$ $2x^3 + x^2 - 7x + 1$ Cubic pby nomio	
3. Adding & Subtracting Polynomials	• For subtraction, change		a. Simplify: $(3x^2 - 4x + 8) + (2x - 7x^2 - 5)$ $3x^2 - 4x + 8 + 2x - 7x^2 - 5$ $-4x^2 - 2x + 3$ Classification:	b. Find the sum: $(7y^2 + 2y - 3) + (2 - 4y + 5y^2)$ Classification:	
			quadratic trinomial c. What is the result of: change sign $(3x^2 - 3x - 5) - (2x^2 + x - 6)$ $3x^2 - 3x - 5 - 2x^2 - x + 6$ $1x^2 - 4x + 1$	d. Simplify: ondage Signs $(4x^2 + 2x - 7) - (-2x^2 + 5x + 3)$ $4x^2 + 2x - 7) - (-2x^2 + 5x + 3)$ $4x^2 + 2x - 7 - 2x^2 + 2x$	
			Classification: quadratic trinomial e. Determine the values of m & n. $(2x^2 + 3x - 8) + (mx^2 - nx + 4) = 5x^2 - 8x - 4$ $2x^2 + 3x - 8 + mx^2 - nx + 4 = 5x^2 - 8x - 4$ $m = 3$ $n = 11$	7 1) 7 3) 7 2) -	

4. Multiplying **Polynomials**

- Set up "Area Model"
- Combine like terms

a. Find the product: (x + 5)(x - 2)

(3x + 3)

$$\begin{array}{c} (3x - 4) & (3x + 3) \\ (2x - 4) & (3x + 3) \\ 3x & 6x^{2} - 12x \\ +3 & +6x - 12 \\ 6x^{2} - 6x - 12 \end{array}$$

b. Simplify: $(x - 5)^2$ (x-5)(x-5)

d. Simplify: (x-3)(x+3)

5. Applications of Polynomials

Perimeter

- Fill in the missing sides
- Add all sides on the exterior of the figure

Area

- Use the area formula for the respective figure
- Rectangle = lw
- Triangle = $\frac{bh}{2}$
- Use "Area Model" to multiply if necessary

a. Find the perimeter and area of the following figure:

Perimeter =

Area =
$$\begin{pmatrix} 2x - 4 \end{pmatrix} \begin{pmatrix} x + 6 \end{pmatrix}$$

 $\begin{pmatrix} 2x - 4 \end{pmatrix} \begin{pmatrix} x + 6 \end{pmatrix}$
 $\begin{pmatrix} 2x^2 - 4x \end{pmatrix}$
 $\begin{pmatrix} 42x - 24 \end{pmatrix}$
 $\begin{pmatrix} 2x^2 + 8x - 24 \end{pmatrix}$

c. In 2014, the number of apples harvested at a local farm was represented by the expression $8x^2 + 2x + 3$. In 2015, the number of apples harvested was represented by the expression $6x^2 + 5x + 4$. Write a add polynomial that represents the total number of apples harvested in 2014 and 2015, in terms of x.

b. Find the area of the shaded region.

d. The measure of the perimeter of a triangle is 41x + 33. It is known that two of the sides of the triangle have measures of 18x + 12 and 10x + 9. Find the length of the third side. (Draw a diagram)

6. Simplifying Rac	dicals	a. √36 <u>~</u> 6	b. −3√60 60		
If the problem co Find the	ontains a perfect square : square root are root would be an integer	u. 730	-3 14 /15 1 60 -3 .2 /15 230 -3 .2 /15 320		
If the problem co	ontains a number that is not a		1-10/15		
perfect square:			5/12		
 Use the product of two square roots One of these roots should be a perfect square Find the square root of the perfect square, leave the other root as is. 		c. $\sqrt{54a^4b^{10}}$ 54 $\sqrt{54}$ $\sqrt{a^4}$ $\sqrt{b^{10}}$ $\sqrt{34}$ $\sqrt{54}$ $\sqrt{34}$ $\sqrt{54}$ $\sqrt{34}$ $\sqrt{54}$ $\sqrt{34}$ $\sqrt{54}$ $\sqrt{34}$	d. $3x\sqrt{16x^5y^2}$ $3x\sqrt{16}\sqrt{x^5}\sqrt{y^2}$		
If the problem contains an even exponent : • Divide the exponent by 2		3 6 · d · b · 6 9	$3x.4 \cdot x^2 \sqrt{x} \cdot y$		
 Break the One shown exponen The othe The sum 	entains an odd exponent : be problem up into 2 powers uld have the highest even at r exponent should be 1 of both exponents should be anal exponent	30° b 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 x3y TX		
7. Multiplying Radicals	 Remember your rules of exponents Multiply outside numbers/variables together Multiply inside numbers/variables together Simplify 	a) $5\sqrt{6.2\sqrt{6}}$ 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b) $-2\sqrt{3x} \cdot 4\sqrt{3x}$ $-8\sqrt{9} \times^2$ $-8\sqrt{9} \cdot \sqrt{x^2}$ $-8 \cdot 3 \cdot \times$ $-24\times$		
		c) $2\sqrt{x^3} \cdot 2\sqrt{x^4}$ $4\sqrt{\chi^7}$ $4\sqrt{\chi^6}\sqrt{\chi}$ $4\chi^3\sqrt{\chi}$	d) $3\sqrt{18a^2b \cdot 4\sqrt{3}ab^3}$ $12\sqrt{54}\sqrt{3}b^4$ $12\sqrt{54}\sqrt{3}\sqrt{54}$ $12\sqrt{9}\sqrt{6}\sqrt{9}\sqrt{4}\sqrt{4}$ $12\sqrt{9}\sqrt{6}\sqrt{9}\sqrt{4}\sqrt{4}$		
8. Adding & Subtracting Radicals	Simplify ALL radicals first! Then add/subtract like radicals.	a. 8√ <u>7</u> −3√ <u>7</u> 5√7	$ \begin{array}{c} $		

		c. $3\sqrt{20} + 2\sqrt{60} - 6\sqrt{5}$ $3\sqrt{4}\sqrt{5} + 2\sqrt{4}\sqrt{5} - 6\sqrt{5}$ $3\cdot 2\sqrt{5} + 2\cdot 2\sqrt{5} - 6\sqrt{5}$ $6\sqrt{5} + 4\sqrt{5} - 6\sqrt{5}$ $4\sqrt{15}$ e. $\sqrt{12w} + \sqrt{27w}$ $\sqrt{12}\sqrt{w} + \sqrt{27}\sqrt{w}$ $\sqrt{12}\sqrt{w} + \sqrt{27}\sqrt{w}$ $\sqrt{4}\sqrt{3}\sqrt{w} + \sqrt{9}\sqrt{3}\sqrt{w}$ $2\sqrt{3}\sqrt{3} + \sqrt{3}\sqrt{3}\sqrt{w}$ $\sqrt{5}\sqrt{3}\sqrt{w}$	15,120-10,110
9. Rational and Irrational Numbers	13(13+2) 19+2[3 3+2[3]	Classify the following as: rational or irrational. a. $\sqrt{9} = 3$ b. $\sqrt{7}$ c. $\sqrt{4} + \sqrt{9}$ $2 + 3 = 5$ d. $\sqrt{7} + \sqrt{4}$ e. $\sqrt{3}(\sqrt{3} + 2)$ i. Which sum is rational? a. $\sqrt{9} = 3$ i. Which sum is rational? a. $\sqrt{5} + 2.1$ b. $\sqrt{9} + 6.25 = 3 + 6.25$ e. $\sqrt{3} + \pi$ e. $\sqrt{3} $	g. Explain the whether the outcome is rational or irrational $\sqrt{4} + \sqrt{16}$. (Perfect Square) $2 + 4 = 6$ Rational h. Explain the outcome of $2\sqrt{2}(5+\sqrt{2})$ $2\sqrt{3} \cdot 5 + 2\sqrt{3} \cdot 70$ $10\sqrt{3} + 2\sqrt{4}$ $10\sqrt{3} + 2\sqrt{4}$ $10\sqrt{3} + 2\sqrt{4}$ $10\sqrt{3} + 2\sqrt{3}$ $10\sqrt{3} +$

10. Metric Conversions

king	Henry	Died	Unexpectedity	Drinking	Chocolate	mik
k	h	d	U	d	С	n
kilo	hecto	deka	UNIT GRAM METER LITER	deci	centi	milli

When moving the decimal to the left, you are dividing by a power of 10.

When moving the decimal to the right, you are multiplying by a power of 10.

When comparing two quantities, make sure they are in the same unit before comparing (you might have to convert one of them to the other unit first).

Convert the following:

a.
$$12.54 \text{ km} = \frac{1254,000}{12.54000} \text{ cm}$$

b. $457 \text{ mL} = \frac{00457}{12.54000} \text{ hL}$

0.55

Compare the following: (< , >,or =)
(Convert to the same units first!)

f.
$$34 g = 0.34 hg$$

- g. A recipe for shortbread cookies calls for 5 grams of butter to make 12 cookies. How many deci-grams will there be in 60 cookies?
- h. A rectangle has a length of 18 meters and a width of 500 centimeters. What is the perimeter, in centimeters, of the rectangle?

11. Unit Conversions (1 & 2 Step)

Conversion Factor: what you want what you have

Remember this activity:

$$x = \bigcirc x = \bigcirc$$

If you are going from Metric to Customary or vice versa, the conversion factor will be given to you.

a. Convert 7 miles to feet.

$$\frac{7 \text{ mi}}{1} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} = \frac{36960 \text{ ft}}{1}$$

$$= \frac{36,960 \text{ ft}}{1}$$

b. Convert 5 years into days.

c. How many miles will a person run during a 10 kilometer race? (1 mi = 1.6 km)

d. How many gallons are in 600 quarts? | qal = 4 q+

12. Multi-Step Dimensional Analysis

Make sure you write every single conversion factor!

Think about where you are starting and where you want to go. Create a plan that includes the necessary conversion factors.

Example: A bucket has 4.65 L of water. How many gallons of water is that (1.06 qt = 1 L).

Given: 4.65 L Needed: gallons

Plan: L → qt → gallon

Equalities: 1.06 qt = 1 L; 1 gal = 4 qt

Set Up Problem:

$$4.65 \cancel{k} \times \times \frac{1.06 \cancel{qt}}{1 \cancel{k}} \times \frac{1 \text{ gal}}{4 \cancel{qt}} = 1.23 \text{ gal}$$

a. Convert 12 pints to gallons.

b. Sarah ran a 10 meter race.
How many feet is that? (1 in = 2.54

c. A bowl of cereal weighs 60 oz. How heavy is it in kg? (1 oz = 28.3 g)

$$0z \rightarrow g \rightarrow kg$$
 $\frac{600£}{1000g} \cdot \frac{28.3g}{1000g} \cdot \frac{1kg}{1000g}$
 $\frac{1698 \text{ kg}}{1000} = 1.698 \text{ kg}$

d. John lives 4.1 miles from work (Use 1 mi = 1609 meters). Kevin lives 2.5 kilometers from work.

Bill lives 1800 meters from work. Jess lives 290,000 centimeters from work.

Put them in order from who lives closest to the work to who lives the farthest from work. Show your work.

13. Rate Conversions

Sometimes it is helpful to convert either the numerator or denominator first and then convert the other. If you do too much at once, your problem gets messy.

Example: Convert 66 feet per second to miles per hour.

$$\frac{66 \text{ feet}}{1 \text{sec}} \cdot \frac{60 \text{ sec}}{1 \text{min}} \cdot \frac{60 \text{min}}{1 \text{hour}} \cdot \frac{1 \text{mile}}{5280 \text{ feet}} = 45 \text{ miles/hour}$$

a. Convert 65 mph to feet per minute.

b. Convert 32 feet/seconds to meters/min (1 inch = 2.54 cm).

$$\frac{32ft}{15ec} \cdot \frac{12ik}{1ft} \cdot \frac{2.54cm}{1im} \cdot \frac{1m}{100 em} \cdot \frac{60ec}{1min}$$

$$= \frac{58521.6 m}{100 min} = \frac{585.216 m/min}{100 min}$$

c. The average American student is in class 330 minutes/day. How many hours per school week is this (use 1 school week = 5 days)?