\qquad
\qquad
\qquad
Unit 1 Study Guide

4. Multiplying Polynomials	- Set up "Area Model" - Combine like terms	a. Find the product: $(x+5)(x-2)$ $\begin{aligned} & x^{2}+5 x-2 x-10 \\ & x^{2}+3 x-10 \end{aligned}$	$\begin{aligned} & \text { b. Simplify: } \begin{array}{l} (x-5)^{2} \\ (x-5)(x-5) \\ x \\ x-5 \\ -5 x^{2}-5 x \\ \hline-5 x-25 \\ \hline x^{2}-10 x+25 \\ \hline \end{array} \end{aligned}$
		c. What is the product of $(2 x-4)$ and $(3 x+3)$ $\begin{aligned} & (2 x-4)(3 x+3) \\ & 3 x-4 \\ & 3 x+6 x^{2}-12 x \\ & +3+6 x-12 \\ & 6 x^{2}-6 x-12 \end{aligned}$	d. Simplify: $(x-3)(x+3)$ $\begin{gathered} x^{2} \pm 3 x-3 x-9 \\ x^{2}-9 \end{gathered}$
5. Applications of Polynomials	Perimeter - Fill in the missing sides - Add all sides on the exterior of the figure Area - Use the area formula for the respective figure - Rectangle $=1 \mathrm{w}$ - Triangle $=\frac{b h}{2}$ - Use "Area Model" to multiply if necessary	a. Find the perimeter and area of the following figure: Area $=$ $\begin{aligned} & (2 x-4)(x+6) \\ & x \left\lvert\, \frac{2 x-4}{2 x^{2}-4 x}\right. \\ & +6 \mid+12 x-24 \\ & 2 x^{2}+8 x-24 \end{aligned}$	b. Find the area of the shaded region. area area $\begin{aligned} & (4 x+2)(4 x+2)-(x-1)(x-1) \\ & \left(16 x^{2}+16 x+4\right)-\left(x^{2}-2 x+1\right) \\ & 16 x^{2}+16 x+4-x^{2}+2 x-1 \\ & 15 x^{2}+18 x+3 \end{aligned}$
		c. In 2014 , the number of apples harvested at a local farm was represented by the expression $8 x^{2}+2 x+3$. In 2015, the number of apples harvested was represented by the expression $6 x^{2}+5 x+4$. Write a add polynomial that represents the total number of apples harvested in 2014 and 2015, in terms of x. $\begin{aligned} & \left(8 x^{2}+2 x+3\right)+\left(6 x^{2}+5 x+4\right) \\ & 8 x^{2}+2 x+3+6 x^{2}+5 x+4 \\ & 14 x^{2}+7 x+7 \end{aligned}$	d. The measure of the perimeter of a triangle is $41 x+33$. It is known that two of the sides of the triangle have measures of $18 x+12$ and $10 x+9$. Find the length of the third side. (Draw a diagram) $\begin{gathered} \text { de. (Draw a diagram) } \\ \begin{array}{l} 18 x+22 \\ (41 x+3 \end{array} \frac{18 x+9}{10 x+3)} \\ (48 x+31 \\ 41 x+33-28 x-31 \end{gathered}$
			$13 x-2$

6. Simplifying Radicals If the problem contains a perfect square: - Find the square root - The square root would be an integer If the problem contains a number that is not a perfect square: - Use the product of two square roots - One of these roots should be a perfect square - Find the square root of the perfect square, leave the other root as is. If the problem contains an even exponent: - Divide the exponent by 2 If the problem contains an odd exponent: - Break the problem up into 2 powers - One should have the highest even exponent - The other exponent should be 1 - The sum of both exponents should be the original exponent		a. $\sqrt{36} \simeq 6$	$\text { b. } \begin{aligned} &-3 \sqrt{60} \\ &- 3 \sqrt{4} \sqrt{15} \\ &-3 \cdot 2 \sqrt{15} \\ &-6 \sqrt{15} \end{aligned}$
		$$	$\begin{aligned} & \text { d. } 3 x \sqrt{16 x^{5} y^{2}} \\ & 3 x \sqrt{16} \sqrt{x^{5}} \sqrt{y^{2}} \\ & 3 x \cdot 4 \cdot \sqrt{x^{4}} \sqrt{x} \cdot y \\ & 3 x \cdot 4 \cdot x^{2} \sqrt{x} \cdot \frac{y}{12 x^{3} y \sqrt{x}} \\ & \end{aligned}$
7. Multiplying Radicals	- Remember your rules of exponents - Multiply outside numbers/variables together - Multiply inside numbers/variables together - Simplify	a) $\begin{aligned} & 5 \sqrt{6} \cdot 2 \sqrt{6} \\ & 10 \sqrt{36} \\ & 10 \cdot 6 \\ & 60 \end{aligned}$	$\text { b) } \begin{aligned} & 2 \sqrt{3 x} \cdot 4 \sqrt{3 x} \\ - & 8 \sqrt{9 x^{2}} \\ - & 8 \sqrt{9} \cdot \sqrt{x^{2}} \\ - & 8 \cdot 3 \cdot x \\ & -24 x \end{aligned}$
		c) $\begin{aligned} & 2 \sqrt{x^{3}} \cdot 2 \sqrt{x^{4}} \\ & 4 \sqrt{x^{7}} \\ & 4 \sqrt{x^{6}} \sqrt{x} \\ & 4 x^{3} \sqrt{x} \end{aligned}$	$\begin{aligned} & \text { d) } 3 \sqrt{18 a^{2} b} \cdot 4 \sqrt{3 a b^{3}} \\ & 12 \sqrt{54 a^{3} b^{4}} \\ & 12 \sqrt{54} \sqrt{a^{3}} \sqrt{b^{4}} \\ & 12 \sqrt{9} \sqrt{6} \cdot \sqrt{a^{2}} \sqrt{a} \cdot b^{2} \\ & 12 \cdot 3 \sqrt{6} \cdot a \sqrt{a} \cdot b^{2} \\ & 36 a b^{2} \sqrt{6 a} \end{aligned}$
8. Adding \& Subtracting Radicals	- Simplify ALL radicals first! - Then add/subtract like radicals.	$\begin{aligned} & \text { a. } 8 \sqrt{7}-3 \sqrt{7} \\ & 5 \sqrt{7} \end{aligned}$	$\begin{aligned} & \text { b. } 4 \sqrt{6}-3 \sqrt{24} \\ & 4 \sqrt{6}-3 \sqrt{4} \sqrt{6} \\ & 4 \sqrt{6}-3,2 \sqrt{6} \\ & 4 \sqrt{6}-6 \sqrt{6} \\ & -2 \sqrt{6} \end{aligned}$

10. Metric Conversions

ko	Henry	Died	Unexpected	Drain	Chocolate	$m \mathrm{mk}$
k	h	d		d	c	m
kilo	hecto	deka	GRAM METER TER	deci	centi	milli

When moving the decimal to the left, you are dividing by a power of 10 .

When moving the decimal to the right, you are multiplying by a power of 10 .

When comparing two quantities, make sure they are in the same unit before comparing (you might have to convert one of them to the other unit first).

Convert the following:

a. $12.54 \mathrm{~km}=1,254,000$ 12.54000
b. $457 \mathrm{~mL}=.00457$ hL
-00457
c. $0.55 \mathrm{dkg}=$ \qquad 55 \qquad dg
0.55
g. A recipe for shortbread cookies calls for 5 grams of butter to make 12 cookies. How many deci-grams will there be in 60 cookies?
11. Unit Conversions (1 \& 2 Step)

Conversion Factor: $\frac{\text { what you want }}{\text { what you have }}$
Remember this activity:

If you are going from Metric to Customary or vice versa, the conversion factor will be given to you.
$m \rightarrow \mathrm{~cm} \rightarrow$ in $\rightarrow \mathrm{ft}$
12. Multi-Step Dimensional Analysis

Make sure you write every single conversion factor!

Think about where you are starting and where you want to go. Create a plan that includes the necessary conversion factors.

Example: A bucket has 4.65 L of water. How many gallons of water is that ($1.06 \mathrm{qt}=1 \mathrm{~L}$).

Given: $4.65 \mathrm{~L} \quad$ Needed: gallons
Plan: $L \longrightarrow$ qt \longrightarrow gallon
Equalities: $1.06 \mathrm{qt}=1 \mathrm{~L} ; 1 \mathrm{gal}=4 \mathrm{qt}$

Set Up Problem:
$4.65 L \times \frac{1.06 \mathrm{gt}}{1 / 2} \times \frac{1 \mathrm{gal}}{4 \mathrm{gt}}=1.23 \mathrm{gal}$
13. Rate Conversions

Sometimes it is helpful to convert either the numerator or denominator first and then convert the other. If you do too much at once, your problem gets messy.

Example: Convert 66 feet per second to miles per hour.

$$
\frac{66 \text { feet }}{1 \text { sect }} \cdot \frac{60 \text { set }}{1 \text { pin in }} \cdot \frac{60 \text { priv }}{1 \text { hour }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}=45 \text { miles } / \text { hour }
$$

b. Sarah ran a 10 meter race. How many feet is that? (1 in $=2.54$ cm)

$$
\frac{\mathrm{cm})}{10 \mathrm{~mm}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{mo}} \cdot \frac{1 \mathrm{ikK}}{2.54 \mathrm{sm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{t}}
$$

$$
\frac{1.000 \mathrm{ft}}{30.48}=32.81 \mathrm{ft}
$$

C. A bowl of cereal weighs 60 oz. How heavy is it in kg ? ($1 \mathrm{oz}=28.3 \mathrm{~g}$)

$$
\frac{1698 \mathrm{~kg}}{1000}=11.698 \mathrm{~kg}
$$

d. John lives 4.1 miles from work (Use $1 \mathrm{mi}=1609$ meters). Kevin lives 2.5 kilometers from work.
Bill lives 1800 meters from work. Jess lives 290,000 centimeters from work.
Put them in order from who lives closest to the work to who lives the farthest from work. Show your work.

$$
\begin{aligned}
& \frac{65 \mathrm{mit}}{1 \mathrm{hr}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mT}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \quad \frac{\mathrm{mi} \rightarrow \mathrm{ft}}{1 \mathrm{mi}=5280 \mathrm{ft}} \\
& \frac{343,200 \mathrm{ft}}{60 \mathrm{~min}}=5,720 \mathrm{ft} / \mathrm{min} \quad \frac{\mathrm{hr} \rightarrow \mathrm{~min}}{1 \mathrm{hr}=60 \mathrm{~min}}
\end{aligned}
$$

b. Convert 32 feet $/ \mathrm{sec}$ ends to meters $/ \mathrm{min}(1 \mathrm{inch}=2.54 \mathrm{~cm})$.

$$
\begin{aligned}
& \frac{32 \mathrm{ft}}{1 \mathrm{set}} \cdot \frac{12 \mathrm{ik}}{1 \mathrm{fK}} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{iK}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{sm}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \\
& =\frac{58521.6 \mathrm{~m}}{100 \mathrm{~min}}=585.216 \mathrm{~m} / \mathrm{mim}
\end{aligned}
$$

c. The average American student is in class 330 minutes/day. How many hours per school week is this (use 1 school week $=5$ days)?

$$
\begin{aligned}
\frac{330 \text { main }}{1 \text { day y }} \cdot \frac{1 \mathrm{hr}}{60 \text { min }} \cdot \frac{5 \text { days }}{1 \text { shool } w k} & =\frac{1650 \mathrm{hr}}{60 \operatorname{sch} w k} \\
& =27.5 \text { hours } / \text { school } \text { week }
\end{aligned}
$$

